Startseite FORPHYS

Didaktogene Lernschwierig- keiten im Physik-UR

An- schauliche Mechanik  

Elektrischer Stromkreis 

 Schüler- versuche

Physik Lernen mit dem Computer

 Meta- Physika- lisches

Im- pres- sum

Kommen- tare und Wünsche

© Horst Hübel Würzburg 2005 - 2014

Wirbelfelder und Potenzialfelder

.

.

Weil solche Felder für das Verständnis von elektrischen Stromkreisen eine Rolle spielen, und weil hier viele Irrtümer kursieren, werden sie hier näher erläutert. Verallgemeinernd geht es dabei um beliebige Felder, die vom Ort x abhängen. "Dissipative" Vorgänge, bei denen Wärme frei gesetzt wird, sind bei der Beurteilung von Potenzialfeld oder Wirbelfeld ausgeschlossen. Vgl. Ringspannung bei der Induktion

Wenn man Kraftfelder im Auge hat, sind Verschiebungsarbeiten der entscheidende Begriff. In allgemeineren Fällen steht statt der Verschiebungsarbeit ein "Umlaufsintegral", das hier nicht näher untersucht werden soll.

Es wird dabei immer wieder um einen Probekörper gehen. Das könnte eine kleine Probemasse bzw. eine kleine positive Probeladung sein. Sie soll (gedanklich) so klein gemacht werden, dass sie das vorhandene Feld nur unwesentlich verändert.

.

Was ist ein Potenzialfeld?

Beispiele sind das Gravitationsfeld einer Kugelmasse, das Gravitationsfeld über der (als eben betrachteten) Erdoberfläche, das elektrische Feld in einem geladenen Kondensator, das elektrische Feld zwischen einzelnen festgehaltenen elektrischen Ladungen.

Typisch für ein solches Potenzialfeld ist die Wegunabhängigkeit der Verschiebungsarbeit durch eine äußere Kraft (die Verschiebungsarbeit durch die Feldkraft hätte einfach das umgekehrte Vorzeichen; ich glaube, dass sich mit der äußeren Kraft etwas einfacher argumentieren lässt). Verschiebt man eine Probemasse m bzw. eine Probeladung q von einem Punkt A zu einem Punkt B, so muss für jeden beliebigen Weg von A nach B dieselbe Verschiebungsarbeit verrichtet werden. Das hat zur Folge, dass die Verschiebungsarbeit für jeden beliebigen geschlossenen Weg (z.B. von A nach A) verschwindet. Zwar kann es sein, dass für einen Teilweg eine positive Verschiebungsarbeit aufgewendet werden muss. Diese wird aber auf anderen Wegstücken wieder zurückgewonnen. Wir können auch sagen, dass auf letzteren Wegstücken negative Verschiebungsarbeit aufgewendet wird.

So kann man keine Energie gewinnen oder verlieren, wenn man im Gravitationsfeld über der Erdoberfläche eine Masse erst anhebt und dann wieder zum Ausgangspunkt zurückfallen lässt. Genauso wenig kann im Zwischenraum eines geladenen Kondensators Energie gewonnen oder verloren werden, wenn man eine positive elektrische Ladung erst in Richtung der positiven Kondensatorplatte verschiebt (wozu positive Verschiebungsarbeit aufgewendet werden muss) und dann wieder auf den Ausgangspunkt zurückfallen lässt. Bei letzterem Vorgang wird genau die vorher hinein gesteckte Energie wieder zurückgewonnen.

Ein Potenzialfeld ist energieerhaltend, d.h. es kann keine Energie gewonnen oder vernichtet werden. Erfolgt die Verschiebung durch die Feldkraft so, dass Energie abgegeben wird, z.B. in Form von Wärme, dann nimmt die Energie im Potenzialfeld ab. (In dieser Situation liegt streng genommen kein Potenzialfeld mehr vor.) Das könnte z.B. so geschehen, dass Ladungen durch einen Leiter mit Widerstand transportiert werden, wie etwa bei der Entladung eines Kondensators über einen Widerstand. Energiezufuhr von außen erfordert Abweichungen vom Potenzialfeld, ein Wirbelfeld.

Ein Feld, das an "Ladungen" entspringt und an "Ladungen" endet, das "Ladungen" als Quellen und Senken hat, wird auch als ein Quellenfeld bezeichnet. Im Falle der Gravitation sind diese "Ladungen" Massen, im elektrischen Fall echte elektrische Ladungen. Ein Potenzialfeld ist zugleich ein Quellenfeld.

In einem solchen Feld hat eine Probemasse m bzw. eine Probeladung q an einem Ort x eine potenzielle Energie, die nur von der Position x des Probekörpers im Potenzialfeld abhängt: Um den Probekörper von einem beliebigen festen Punkt A zu irgendeinem Punkt x zu verschieben muss immer die gleiche Arbeit verrichtet werden. Sie ist dann als potenzielle Energie im Probekörper gespeichert. Die Position x ist ein Maß für sie. Dementsprechend ist auch das Potenzial Φ(x) selbst als potenzielle Energie pro "Ladung" eine eindeutige Funktion des Orts x. Müsste man für die Verschiebung vom festen Punkt A zum Punkt x bei unterschiedlichen Wegen jeweils eine andere Arbeit aufwenden, hätte es keinen Sinn, dem Probekörper am Punkt x eine potenzielle Energie zuzuordnen.

Im Potenzialfeld lässt sich eine Spannung zwischen zwei Punkten A und B definieren: Es handelt sich um die spezifische Arbeit beim Verschieben einer "Ladung" von A nach B durch eine äußere Kraft bzw. um das Potenzial Φ(B) an der Stelle B im Vergleich zum Potenzial Φ(A) an der Stelle A. "Spezifisch" heißt dabei "pro Ladungsmenge", also im elektrischen Fall U = WAB / q bzw. U = [ Φ(B) - Φ(A) ] .

Man kann die Spannung U auch definieren als die spezifische Arbeit beim Verschieben einer "Ladung" von B nach A durch die Feldkraft bzw. um das Potenzial Φ(A) an der Stelle A im Vergleich zum Potenzial Φ(B) an der Stelle B. "Spezifisch" heißt dabei "pro Ladungsmenge", also im elektrischen Fall U = WBA / q bzw. U = - [ Φ(B) - Φ(A) ] . Gleichgültig, wie man definiert: Verbindet man den (Minus-)/Masse-Pol des Spannungsmessers mit dem negativen Pol, so zeigt der Spannungsmesser bei Verbindung mit dem Pluspol einen positiven Wert an. Deswegen spricht man nur von einer Spannung "zwischen A und B".

U = [ Φ(B) - Φ(A) ] ist an das Vorliegen eines Potenzialfelds gebunden. ( Andernfalls wäre ein formal nach U = WAB / q definiertes U wegabhängig, also nicht sehr sinnvoll.). Das gilt z.B. in der Elektrostatik.

Ein Potenzialfeld enthält selbst auch potenzielle Energie.

.

Was ist ein Wirbelfeld?
Bei einem Wirbelfeld ist im Gegensatz dazu die Verschiebungsarbeit von einem Punkt A zu einem Punkt B wegabhängig.

Die Verschiebungsarbeit für einen geschlossenen Weg kann dann von Null verschieden sein. Das kann bei fehlender Erfahrung zu unerwarteten Effekten führen: Betrachten Sie den Eisenkern einer Spule, die von einem Wechselstrom durchflossen wird. Der Eisenkern soll so sein, dass der gesamte magnetische Fluss auf den Kern beschränkt ist. Im Eisenkern entsteht dann ein magnetisches Feld von wechselnder Größe und Richtung. Die Folge ist ein elektrisches Wirbelfeld, das den Eisenkern ringförmig umgibt (Induktion). A sei ein Punkt außerhalb des Kerns. Wir legen nun eine geschlossene Leiterschleife durch A. Sie soll einmal den Eisenkern umfassen (Fall a), ein andermal nicht (Fall b). Im Fall b verrichtet das elektrische Wirbelfeld keinerlei Arbeit. In der Leiterschleife entsteht also kein Induktionsstrom. Im Fall a dagegen kann das elektrische Feld Arbeit verrichten, durch die ein elektrischer Strom im Leiter entsteht. Die vom Feld verrichtete Arbeit wird dann z.B. in Form von Wärme an die Umgebung abgegeben.

Abb. 1: Zwei geschlossene Stromkreise bei der Induktion, aber nur ein Strom im Fall a).
Abb. 2: Beispiel für ein Wirbelfeld ohne geschlossene Feldlinien

Wir betrachten eine schmale geschlossene Kurve (rot), die elektrische Feldlinien begleitet. Später wollen wir zu infinitesimal kleinen Abmessungen übergehen. Auf den Wegstücken senkrecht zu den Feldlinien kann keine Arbeit verrichtet werden, wohl aber auf den parallel verlaufenden Stücken. In vielen Fällen werden sich der Anteil zur Verschiebungsarbeit "gegen das Feld" und der Anteil  "mit dem Feld" gegenseitig aufheben. Aber, wenn sich die Stärke des elektrischen Feldes "quer zur Feldrichtung" ändert, gilt das nicht mehr. In diesem Fall ist die Verschiebungsarbeit für diesen geschlossenen Weg von Null verschieden und es liegt ein Wirbelfeld vor. Anschaulich ist also typisch für ein Wirbelfeld eine "Queränderung der Feldstärke".

Abb. 3: Beispiel für ein Wirbelfeld

Wir betrachten eine schmale geschlossene Kurve (rot) aus infinitesimal gedachten Strecken, die die elektrischen Feldlinien begleitet. Bei Kurve (1) ist die Verschiebungsarbeit 0, bei Kurve (2) dagegen nicht, weil hier die Felder auf Hin- und Rückweg gleichgerichtet sind. Wirbel entstehen in diesem Beispiel an der Grenze zwischen Zonen mit entgegengesetzter Feldrichtung.

In vielen Fällen ist ein solches Wirbelfeld ein Feld mit ringförmig in sich geschlossenen Feldlinien. Dann handelt es sich um ein reines Wirbelfeld ohne Anteil eines Potenzialfelds (div E = 0, rot E =/= 0). Das muss aber nicht so sein. Es sind auch Wirbelfelder denkbar mit einem überlagerten Potenzialfeld. Dann könnten die Feldlinien Anfang und Ende haben (E wäre dann auch ein Quellfeld), aber trotzdem eine Queränderung des Feldes vorhanden sein, also div E =/= 0 und rot E =/= 0. Ein typisches Beispiel ist ein auf einen bestimmten Bereich beschränktes Feld, dessen Feldlinien parallel zur Begrenzung verlaufen (Abb. 2, 3). Nur ein reines Wirbelfeld ist quellfrei.

In einem Wirbelfeld kann man der Probemasse m bzw. der Probeladung q keine potenzielle Energie und kein Potenzial (im Sinne obiger Definition, also ein "skalares" Potenzial) zuordnen, weil die Arbeit zur Verschiebung von A nach B je nach Weg unterschiedlich ist.

Ein Potenzialfeld ist wirbelfrei.

.

Beispiele

a) Feld eines geladenen Plattenkondensators

Für jeden beliebigen geschlossenen Weg, ob er nun die felderzeugenden Ladungen einschließt oder nicht, ist die Verschiebungsarbeit 0. Also liegt ein Potenzialfeld mit einem Potenzial Φ(x) vor. Eine Ladung in diesem Feld besitzt eine potenzielle Energie. Dieses Feld kann Arbeit verrichten, indem es z.B. eine positive Probeladung vom Pluspol abstößt und so beschleunigt, oder indem es dabei Wärme nach außen abgibt. Aber die potenzielle Energie der Ladung ist schnell aufgezehrt. Dann kommt der Vorgang zum Erliegen, außer wenn erneut Energie von außen zugeführt wird. Verbindet man die Kondensatorplatten durch einen Leiter (innerhalb oder außerhalb des Kondensatorvolumens), dann wird ebenfalls potenzielle Energie in kinetische Energie der verschobenen Ladungen bzw. Stromwärme umgewandelt bis alle Ladungen des Kondensators abgeflossen sind. Damit endet der Vorgang.

.

Was hat man von dieser Kenntnis über das Potenzialfeld eines geladenen Plattenkondensators?

  • Energieumwandlungen, z.B. bei der Beschleunigung oder dem Abbremsen von elektrischen Ladungen im Kondensatorfeld werden erklärt. Das erlaubt z.B. auch die Berechnung der Endgeschwindigkeit nach dem Beschleunigen durch ein elektrisches Feld.
  • Es wird ein nützlicher Zusammenhang zwischen Spannung/Potenzial und potenzieller Energie einer Ladung zur Verfügung gestellt. Gemeint ist die gewöhnliche Spannung als Potenzialdifferenz pro Ladungsmenge.
  • Es erklärt den Entladevorgang eines Kondensators.
  • Verbindet man die beiden Kondensatorplatten im Außenraum wird hier ein nicht stationärer (zeitabhängiger) Ringstrom angetrieben 1. durch die Potenzialdifferenz zwischen den beiden Platten (auf dem Weg im Außenraum) und 2. als Verschiebungsstrom im Kondensator als Folge der zeitlichen Änderung des elektrischen Felds im Kondensator.

.

b) Monozelle

Bei der unverbundenen Monozelle sorgen "chemische Kräfte", also Kräfte nichtelektrischer Natur, für eine Ladungstrennung. Es entstehen ein positiver und ein negativer Pol. Der Vorgang ist beendet, wenn Kräftegleichgewicht zwischen den chemischen Kräften und der so entstandenen elektrischen Kraft des E-Felds vom Pluspol zum Minuspol (im Inneren der Monozelle) entstanden ist. Bringen wir gedanklich eine weitere positive Probeladung in das Batterieinnere, würde diese keine Kraft erfahren. Formal kann man die Wirkung der chemischen Kräfte durch eine eingeprägte "elektrische" Feldstärke E(e) beschreiben und sie dadurch in gleicher Weise wie die elektrischen Kräfte behandeln, ein raffinierter Trick. Danach ist also das Innere der unverbundenen Monozelle feldfrei, weil sich die eingeprägte elektrische Feldstärke und die wirkliche elektrische Feldstärke ( E(e) + E = 0 im Inneren; E(e) ist auf das Innere der Monozelle beschränkt) gegenseitig aufheben (man kann dies auch als Aussage über die beteiligten Kräfte sehen). Bei der unverbundenen Monozelle kann man die formale "eingeprägte Feldstärke" E(e) im Prinzip durch die sich im Inneren ausbildende elektrische Feldstärke messen: E(e) = - E. Ist das Gesamt-Feld hier wirbelfrei? Und es kommt auf das Gesamt-Feld an, weil dieses mit allen wirkenden Kräften und Verschiebungsarbeiten zusammenhängt!

Abb. 4: Unterschiedliche Verschiebungsarbeit je nach Weg

Überlegen wir uns wieder die Verschiebungsarbeit bei einem vollen Umlauf: Startpunkt A liege auf dem positiven Pol. Um die positive Probeladung im Außenraum zum negativen Pol zu führen, wird Energie frei bzw. negative Verschiebungsarbeit verrichtet. Um die Ladung durch das Innere zu A zurückzuführen, muss keine Arbeit verrichtet werden. Die gesamte Verschiebungsarbeit auf dem geschlossenen Weg ist negativ.

Führen wir die positive Probeladung aber vom negativen Pol durch den Außenraum zu A zurück, muss für den Rückweg positive Arbeit aufgebracht werden, weil sich die beiden positiven Ladungen abstoßen. Es ist plausibel, dass für den so gewählten geschlossenen Weg die Verschiebungsarbeit 0 ist.

Es liegt ein Wirbelfeld vor, weil es geschlossene Weg gibt, auf denen die Verschiebungsarbeit nicht 0 ist. Insgesamt haben wir gesehen, dass die Verschiebungsarbeit wegabhängig ist. Es liegt also kein Potenzialfeld vor. Allerdings verschwindet die Verschiebungsarbeit nur bei speziellen Wegen durch das Innere der Monozelle nicht. Das ist möglicherweise der Grund, weshalb jeder Elektroniker ungestraft und mit Erfolg von Potenzialen in seiner Schaltung sprechen kann.

Eine Ringspannung U wird definiert als Verschiebungsarbeit für einen geschlossenen Weg pro Ladungsmenge q. Bestenfalls für E allein lässt sich ein Potenzial definieren. Ein evtl. vorhandenes überlagertes Potenzialfeld kann zur Ringspannung nichts beitragen, nur E(e). Nur Ringspannungen für einen Weg, der teilweise durch das Innere der Monozelle führt, sind von 0 verschieden.

Wenn die Monozelle Teil eines geschlossenen Stromkreises ist, fließen die an den Polen angehäuften Ladungen sofort wieder ab. Es kommt dann nicht zur Ausbildung des Kräftegleichgewichts im Inneren der Monozelle. Die chemischen Kräfte bzw. E(e) treiben dann einen Ringstrom an. Die Unterscheidung Wirbelfeld oder Potenzialfeld ist dann aber ohnehin hinfällig..

.

Was hat man von dieser Kenntnis über das "elektrische" Wirbelfeld bei einer Monozelle?

  • Sie erklärt, dass ein stationärer Strom, der ständig Energie nach außen abgibt, in einem Stromkreis mit einer Monozelle überhaupt fließen kann. Nämlich deshalb, weil das Wirbelfeld E(e) für ständigen Energienachschub sorgt. Dazu ist eben nur ein Wirbelfeld in der Lage.
  • In diesem Fall ist der Ringstrom eine Folge der Ringspannung, die wiederum allein eine Folge des Wirbelfelds E(e) ist.
  • Es wird klar, dass es sich also um die ständige Überführung einer nichtelektrischen Energie (mittels chemischer Kräfte) in eine andere nichtelektrische Energieform (Wärme) handelt.
  • Es wird klar: Außerhalb der Monozelle bildet sich ohne Stromfluss das gleiche elektrische Feld aus wie bei einem auf die gleiche Spannung aufgeladenen Kondensator (bei entsprechenden Dimensionen). Außerhalb - aber nur dort -  sind also Feld und Kräfte in diesem Fall von einem Potenzialfeld nicht zu unterscheiden. Die Argumentation mit einem Potenzialfeld genügt deshalb für viele Anwendungsfälle, wie in der Elektronik.
  • Es wird klar: Fließt der Ringstrom durch zusätzliche Potenzialfelder, so spielen diese selbst keinerlei Rolle für die Ringspannung, die nur durch die Monozelle bestimmt ist. Der Ringstrom hängt allerdings vom jeweiligen Kreiswiderstand ab.

Der letzte Punkt ist z.B. bei einer Halbleiter-Diode im Stromkreis zu beachten. Durch Raumladungen in der Nähe der Grenzschicht entstehen dort zusätzliche elektrische Potenzialfelder. Für die Ringspannung sind sie belanglos. Diese ist allein durch die Monozelle bestimmt.

.

c) Induktion bei zeitlich veränderlichem Magnetfeld

Nach dem Induktionsgesetz entsteht dann ein elektrisches Wirbelfeld, das das sich ändernde Magnetfeld ringförmig umgibt. Es handelt sich um ein reines Wirbelfeld, weil (wenn der geschlossene Weg ganz oder gar nicht mit einem Leiter belegt ist) nirgends Quellen und Senken eines Potenzialfelds entstehen. Es kommt auf den Verlauf des geschlossenen Weges an. Insbesondere könnte der geschlossene Weg den magnetischen Fluss auch mehrfach umkreisen, wobei die Verschiebungsarbeit mehrfachen Wert als bei einmaliger Umkreisung haben würde. Trotz zeitlich veränderlichem Magnetfeld kann man auch leicht Wege finden, bei denen die Verschiebungsarbeit für einen geschlossenen Weg verschwindet (wenn der Weg keinen magnetischen Fluss umfasst). Andernfalls gibt es eine Ringspannung U =/= 0, die bis auf das Vorzeichen gleich der Änderungsrate des magnetischen Flusses ist. Die Ringspannung ruft im geschlossenen Stromkreis einen Ringstrom hervor. Erst, wenn man den Leiterkreis auftrennt, entsteht durch die Ladungsverschiebung zwischen den entstandenen "Klemmen" ein zusätzliches überlagertes Potenzialfeld und damit auch eine gewöhnliche Spannung ("Klemmenspannung") von (weitgehend) gleicher Größe wie die Ringspannung. Für den Stromfluss im geschlossenen Stromkreis ist aber die Ringspannung U verantwortlich.

Auch hier kann ein evtl. vorhandenes überlagertes Potenzialfeld zur Ringspannung nichts beitragen. Der Ringstrom ist allein durch die Ringspannung und den gesamten Kreiswiderstand bestimmt.

Anders als in der Elektrostatik verschwindet die elektrische Feldstärke im Leiter (bei nicht zu großen Frequenzen des sich ändernden Magnetfelds) i.A. nicht, da die Ladungsverschiebung durch den Stromfluss nie zu einer Kompensation des elektrischen Feldes führt. Die Feldstärke ist im Gegenteil für den ständigen (evtl. wechselnden) Strom verantwortlich. In der Elektrostatik dagegen werden in der Regel nur Situationen betrachtet, bei denen sich der stationäre Zustand mit Feldstärke 0 im Leiter bereits eingestellt hat.
Abb.  5: Unterschiedliche Anzeigen der Spannungsabfälle U1 und U2 bei gleicher Ringspannung U!

Vorausgesetzt sind hochohmige Spannungsmesser.

U1 misst den Spannungsabfall am Widerstand R, U2 den Spannungsabfall an R' infolge des Ringstroms I. U ist die Ringspannung im rot gezeichneten Leiterkreis, wenn dieser ein sich änderndes magnetisches Feld B einschließt. Keiner der beiden Messkreise wird von einem nennenswerten sich ändernden magnetischen Fluss durchsetzt.

Abb. 6: Keine Anzeige, wenn ein nur gedachter Leiterkreis vom sich ändernden magnetischen Fluss durchsetzt wird.

U1 = 0, da 1. kein Ringstrom fließt, der einen Spannungsabfall hervorrufen könnte, da 2. den Messkreis kein sich ändernder magnetischer Fluss durchsetzt.

Oder:

U1 = 0 bei einer gedachten Ergänzung zum geschlossenen Leiterkreis: Zwischen A und B sorgt das Feld E zu einer Ladungsverschiebung (+ bei B, - bei A), die zur Entstehung eines entgegengesetzten sekundären elektrischen Felds Es führt, bis sich schließlich die beiden Felder zwischen A und B aufheben.

Abb. 7: Kein Strom bei (b), obwohl ein geschlossener Leiterring vorliegt (alle Leiter sollen einen endlichen Widerstand haben)

Analog zu den Situationen (b) Ringspannung 0, wenn kein magnetischer Fluss umfasst wird, und (a) Ringspannung =/=0 , wenn ein sich zeitlich ändernder magnetischer Fluss umfasst wird, kann man auch bei der Monozelle zwei ähnliche Situationen finden: (b), wenn der geschlossene Weg nicht durch die beiden Pole der Monozelle verläuft, (a), wenn er durch beide Pole verläuft. Nur im Fall a) erhält man einen Ringstrom, wenn die beiden Pole längs des geschlossenen Wegs mit einem Leiter endlichen Widerstands verbunden werden. Dass in einer Situation mit Leitern ähnlich der Zeichnung links (Weg b) kein Strom fließen kann, macht zwar Schülern im Anfangsunterricht noch Schwierigkeiten, ist aber sonst so selbstverständlich, dass man beide Situationen (a) und (b) nicht getrennt herausstellen muss. Anders verhält es sich bei der Induktion.

.

Was hat man von dieser Kenntnis über das elektrische Wirbelfeld bei der Induktion?

  • Das Grundsätzliche der Induktion wird herausgestellt: die Entstehung einer Ringspannung bzw. eines elektrischen Wirbelfelds bei der zeitlichen Änderung des eingeschlossenen magnetischen Flusses.
  • Die Ringspannung erklärt, wie die Klemmenspannung bei unterbrochener Induktionsschleife entsteht.
  • Das Induktionsgesetz dabei erklärt, weshalb Spannungsmesser unterschiedliche Ringspannungen anzeigen bei unterschiedlichen geschlossenen Kurven. Die Ringspannung ist nur von 0 verschieden, wenn ein sich zeitlich ändernder magnetischer Fluss umfasst wird.

Allerdings, es gibt Situationen (Induktion bei zeitlich konstantem Magnetfeld), wo es zwar immer eine Ringspannung, aber in bestimmten Bezugssystemen kein elektrisches Wirbelfeld gibt. Die Aussagen hier gelten aus der "Sicht der betrachteten Kurve".

.

d) Induktion bei einem im Magnetfeld bewegten Leiterstab

Schwieriger ist der Fall einer Leiterbrücke (Leiterstab), die mit gutem Kontakt auf einem U-förmigen Leiterbügel gleitet. Das Magnetfeld B durchsetze das so aufgespannte Rechteck senkrecht. Im Laborsystem, in dem der U-förmige Leiterbügel ruht, können wir die Induktion als Folge der Lorentz-Kraft FL = q v x B beschreiben, der sich formal eine eingeprägte Feldstärke E(e) = FL /q = v x B zuordnen lässt (Im mit der Leiterbrücke mitbewegten BZS ist das sogar eine echte elektrische Feldstärke E'). Das eingeprägte Feld E(e) ist auf die mit der Geschwindigkeit v gleitenden Leiterbrücke beschränkt, also liegt eine "Queränderung" am Rand der Leiterbrücke vor und damit Wirbel der eingeprägten Feldstärke E(e) . E(e) ist der Grund für eine von 0 verschiedene Ringspannung als Verschiebungsarbeit für einen vollen Umlauf pro Ladungsmenge. Ein evtl. vorhandenes Potenzialfeld E kann zur Ringspannung nichts beitragen, weil sich Anteile zur Verschiebungsarbeit auf  Teilstücken eines vollen Umlaufs gegenseitig aufheben. Die Ringspannung ist es, die im geschlossenen Stromkreis wieder einen Ringstrom hervorruft. Ist der Stromkreis nicht geschlossen, z.B. im Falle einer isolierten Leiterbrücke, verschiebt E(e) wieder Ladungen in der Leiterbrücke, die zur Ausbildung eines elektrischen Feldes E führen. Nur der Anteil E ist ein Quell- und ein Potenzialfeld. Der Vorgang ist beendet sobald sich Kräftegleichgewicht gebildet hat, wenn also im Inneren der Leiterbrücke gilt: E = - E(e).

Im (lokal) mit der Leiterbrücke mitbewegten BZS lässt sich für die (dort) echte elektrische Feldstärke E' = v x B der Wirbelcharakter mit Wirbeln (von E') ausschließlich am Rand der Leiterbrücke nachweisen. Deswegen mag es erlaubt sein, E(e) ein "elektrisches" Wirbelfeld zu nennen, obwohl es magnetischen Ursprungs ist.

.

Was hat man von dieser Kenntnis über das "eingeprägte" elektrische Wirbelfeld beim im Magnetfeld bewegten Leiterstab?

  • Das Grundsätzliche der Induktion wird herausgestellt: die Entstehung einer Ringspannung bzw. eines "elektrischen" Wirbelfelds bei jeder zeitlichen Änderung des eingeschlossenen magnetischen Flusses. Es braucht begrifflich nicht unterschieden werden zwischen verschiedenen "Arten" der Induktion.
  • Es wird erklärt, dass ein stationärer (oder quasistationärer) Strom entstehen kann durch die Energiezufuhr von außen, was für ein Potenzialfeld unmöglich wäre.
  • Entsprechend werden auch kompliziertere Situationen durch das Wirbelfeld E(e) erklärt, wie etwa die Induktion mit einer rotierenden Faraday-Scheibe im Magnetfeld.

.

Kann ein Potenzialfeld einen dauernden stationären Strom hervorrufen?

Aus energetischen Gründen nicht. Ein Potenzialfeld ist energieerhaltend. Wenn Mechanismen wirksam sind, die Wärme produzieren, wird Energie entzogen, aber nicht ersetzt. Zum Ersatz solcher Energieverluste muss von außen Energie zugeführt werden mittels eines Nicht-Potenzialfelds, also eines Wirbelfelds.
Auf Schulniveau wird das mit einem Analogieversuch gezeigt:

Abb. 8: Ein Wasserstromkreis wird durch eine Pumpe angetrieben. Der Stromkreis kann durch ein Potenzialfeld (Gravitationsfeld) beliebig geführt werden. Selbst, wenn die Leitungen bis zum Mond geführt würden (und wieder zurück), hätte das - wenn er einmal zustande gekommen ist - keinen Einfluss auf den Stromfluss, der allein von der Pumpe angetrieben wird. Die Pumpe bezieht Energie von außen. Bei steigenden Stücken der Leitung würde für ein Wasserteilchen die potenzielle Energie zunehmen, beim gleichzeitigen Herabströmen anderer Wasserteilchen aber in gleichem Maße wieder abgegeben werden. Insgesamt spielen die Änderungen der potenziellen Energie dabei keinerlei Rolle. Das ist ein Effekt, der sich durch ein Teilchenmodell für die mit dem Strom angeblich unabhängig voneinander transportierten "Ladungen" allein nicht erklären lässt. Hier spielen auch Kontinuitätsgleichung und Strömungslehre herein: Energieänderungen müssen für die ganze bewegte Wassermenge betrachtet werden.

Abb. 9: Eine Scheibenwischerpumpe als Energielieferant zum Wasserstromkreis für Energie von außen.

Daraus entwickelt sich das "Pumpenmodell des elektrischen Stromkreises": In einem elektrischen Stromkreis finden zwei Transportvorgänge zugleich statt: 1. der Transport von elektrischen Ladungen, und 2. der Transport von Energie. Die elektrischen Ladungen sind wie das Wasser im Wasserstromkreis schon immer im elektrischen Stromkreis vorhanden. Durch die Strom-/Spannungsquelle als Pumpe werden sie in Bewegung gesetzt. Das Fließen dieser Ladungen heißt elektrischer Strom. Die Ladungen fließen immer im Kreis herum. Zugleich wird mit der Pumpe Energie zugeführt, die mit Hilfe des Stroms zu einem "Verbraucher" transportiert oder dort abgegeben wird. Die Bewegung der Ladungen dient als Vehikel für den Energietransport; auf welchem Weg letzterer geschieht, wird in der Schule nicht angesprochen. Je größer die Spannung U ist, desto größer ist die "Pumpenstärke". Je größer die "Pumpenstärke" ist, desto mehr Ladungen pro Zeiteinheit können bei unverändertem Stromkreis durch einen Leiterquerschnitt transportiert werden, desto größer ist die Stromstärke I (Maß für die Anzahl der pro Zeiteinheit durch einen Leiterquerschnitt transportierten Ladungen). Je größer die "Pumpenstärke" U und die Stromstärke I sind, desto größer ist die pro Zeiteinheit transportierte Energie. Ihr entspricht die Leistung P = U·I. Die Pumpenstärke/Spannung ist charakteristisch für die Pumpe/Strom-/Spannungsquelle, die Stromstärke für den ganzen Stromkreis inkl. Leitungen und "Pumpe".

Das "Pumpenmodell" umgeht die Problematik "Potenzialfeld oder Wirbelfeld".

Das "Pumpenmodell" ist äquivalent zum "Modell des geschlossenen Heizungsstromkreises", bei dem ebenfalls zwei Transportvorgänge gleichzeitig stattfinden, der Transport von Wasser und der Transport von innerer Energie des Wassers, diesmal beides zugleich durch die Leitungsrohre.

Die Notwendigkeit eines Wirbelfelds für einen stationären Strom lässt sich auch theoretisch nachweisen:

Vgl. Der stationäre Strom im geschlossenen Stromkreis

.

Was hat man von dieser Kenntnis?

  • Mit dem "Pumpenmodell" (zu unterschieden vom ebenfalls problematischen Druckmodell) steht ein einfacheres Modell als das "Höhenmodell" für die Spannung in einem Stromkreis zur Verfügung. Beim Höhenmodell besteht die Gefahr, dass Ladungs-Anhäufungen übersehen oder wenigstens nicht beachtet werden. Es neigt dazu zu suggerieren, dass die transportierte Energie in den Ladungen konzentriert sei (wie etwa auch das so genannte "Nektar-Bienen-Modell").

.

Didaktische Folgerungen

  1. Ich meine, dass an der Schule die Problematik "Potenzialfeld oder nicht" nicht diskutiert werden sollte. Es sollten m.E. jedoch falsche Aussagen vermieden werden.
  2. Als einfachstes korrektes Modell des elektrischen Stromkreises, das nicht in Gefahr steht, gegen die Problematik "Potenzialfeld oder Wirbelfeld" zu verstoßen, erscheint mir das Pumpenmodell bzw. das Modell des geschlossenen Heizungsstromkreises.
  3. Dass bei moderneren Modellen des Stromkreises die potenzielle Energie so in den Vordergrund gestellt wird, hat wohl damit zu tun, dass man den Arbeitsbegriff in den Hintergrund schieben möchte. Wie man unschwer an diesem Text erkennen kann, hat der Arbeitsbegriff m.E. auch für die Schule einen hohen Erklärungswert und vermeidet Falschaussagen.
  4. Bei der Induktion entsteht immer ein elektrisches Wirbelfeld (im Sinne von E + E(e)). Es ist mit einer nicht verschwindenden Ringspannung (Umlaufsspannung) verbunden.
  5. Spannung sollte nicht definiert werden als Potenzialdifferenz (gilt nur bei Vorliegen eines Potenzialfelds), sondern als spezifische Verschiebungsarbeit (Verschiebungsarbeit pro Ladung; gilt allgemein). So kann man auch eine Ringspannung (Umlaufsspannung) für einen geschlossenen Weg definieren, die charakteristisch ist für die Induktion.
  6. Weil das Feld im Außenraum einer Monozelle dem Potenzialfeld eines geladenen Kondensators entspricht, kann das "Höhenmodell" (Höhenunterschied entspricht Potenzialdifferenz) für die Spannung einige Fakten des Stromkreises plausibel machen. Es verschleiert, dass die Energie von außen geliefert werden muss und auch als nichtelektrische Energie geliefert werden kann. Es verschleiert, dass zusätzliche Potenzialfelder im Stromkreis für den "Antrieb" keine Rolle spielen, sondern nur die Ringspannung. Wenn schon Höhenmodell, dann sollte nicht die Höhe eingehen, aus der der "freie" Stromfluss startet, sondern die Höhe, auf die die Pumpe die Ladungen pumpen kann (obwohl beide zahlenmäßig, aber nicht begrifflich, identisch sind). Was legt die erreichbare Höhe fest? Nur die Pumpe!
  7. Strenggenommen muss man sich bei Verwendung von Potenzialdifferenzen im Rahmen der Induktion auf Fälle mit unterbrochenem Leiterkreis beschränken, wo aus der Ringspannung zusätzlich eine gewöhnliche (Klemmen-)Spannung entstanden ist. Das Wesentliche der Induktion - das Entstehen eines Wirbelfelds - wird verschleiert, Lernhindernisse werden aufgebaut.

.

Vgl. auch Fragen und Antworten

Vgl. auch Hat Spannung bei einem stationären Strom etwas mit "gestauten Elektronen" zu tun?

und auch Spannungsdefinition "über potenzielle Energie der frei beweglichen Elektronen"?


Hinweise zur Präzisierung:

1. Eine Umlaufs- oder Ringspannung U kann definiert werden als Verschiebungsarbeit für einen geschlossen Weg pro verschobener Ladungsmenge q: U = WAA/q . Im Prinzip wäre das auch im Gravitationsfeld möglich, wobei q durch die Masse zu ersetzen ist, doch ist dort eine Umlaufsspannung belanglos, da sie (im Potenzialfeld) immer 0 ist. W enthält meistens elektrische Anteile; wie wir gesehen haben, kann sie aber auch nichtelektrische Anteile (z.B. von chemischen Kräften oder von der Lorentz-Kraft) enthalten. Bei einer rein elektrischen Arbeit - wie bei der Induktion durch ein zeitlich veränderliches Magnetfeld - gilt: U = ?x222B;o E·dr (Umlaufsintegral für einen geschlossenen Weg von einem Punkt A zu ihm zurück).

2. Wenn ein Potenzialfeld vorliegt mit einem Potenzial Φ, erhält man die Feldstärke E durch Gradientenbildung: E = - grad φ. E ist dann ein wirbelfreies Feld, wie auch die Vektoranalysis lehrt: rot E = rot grad Φ = 0. E besitzt dann Quellen und Senken: div E = ?x03C1;/?x03B5;0 mit der elektrischen Feldkonstanten ?x03B5;0.

3. Wenn ein reines Wirbelfeld (also ohne Quellen und Senken) vorliegt, gelten die Beziehungen: rot E =/= 0 und div E = 0.

4. Was bedeutet "negative Verschiebungsarbeit"? Bei positiver Verschiebungsarbeit wird durch eine äußere Kraft Energie aufgewendet, bei negativer Verschiebungsarbeit wird dementsprechend Energie nach außen abgegeben. Wie kann das geschehen?

Nehmen wir an, wir führen eine positive Probeladung nahe an die positive Kondensatorplatte heran. Dazu müssen wir positive Verschiebungsarbeit aufwenden. Allgemein: Hat man im Potenzialfeld einem Probekörper Energie zugeführt, die als potenzielle Energie gespeichert ist, dann wird diese potenzielle Energie frei, indem der Probekörper anschließend beschleunigt wird (die positive Probeladung in Richtung negativer Kondensatorplatte). Das wäre zunächst ein energieerhaltender Vorgang: potenzielle Energie wird in kinetische Energie umgewandelt und bleibt so zunächst dem System erhalten. Um das zu verhindern müssen wir eine (äußere) Bremskraft auf den Probekörper ausüben, die eine Beschleunigung verhindert. Durch diese Bremskraft wird Energie nach außen abgeführt.

5. Ein stationärer Strom ist ein Strom, durch den nicht im Laufe der Zeit irgendwo im Stromkreis Ladungen angehäuft oder entfernt werden. Gemäß der Kontinuitätsgleichung bedeutet das: div j = - ?x2202;?x03C1;/?x2202;t = 0.

7. Nach Aussage des Poynting-Vektors (Energiestrom-Vektors) S = E x B fließt die Energie nicht durch den Leiter, sondern durch den von E und B erfüllten Raum zwischen den Leitern zum "Verbraucher". Der Strom ist lediglich ein Vehikel für den Energietransport. Vgl.  Becker

8. Umlaufsintegral

Für ein Feld V ist das Umlaufsintegral folgendermaßen definiert: U =?x222B;o V·dr . Dabei bedeutet das Symbol ?x222B;o .... ·dr das Linien-Integral über einen geschlossenen Weg.

.

.

(zuletzt aktualisiert 2013)